
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Improvement in the V-Model
Ravi Shanker Yadav

Abstract—The V-model represents a software development process (also applicable to hardware development) which may be considered an extension

of the waterfall model. Instead of moving dow n in a linear w ay, the process steps are bent upwards after the coding phase, to form the typical V shape.
The V-Model demonstrates the relationship between each phase of the development life cycle and its associated phase of testing. The horizontal and
vertical axes represents time or project completeness (left-to-right) and level of abstraction (coarsest-grain abstraction uppermost), respectively. This

model depends on verif ication and validation phase Software Testing is the most important phase of the Software Development Life Cycle. On most
software projects testing activities consume at least 30 percent of the project effort. On safety critical applications, software testing can consume
between 50 to 80percent of project effort. Software testing is essential to ensure software quality. Schedule is always running tight during the software

system development, thereafter reducing efforts of performing software testing management. In such a situation, improving sof tware quality becomes an
impossible mission It is our belief that software industry needs new approaches to promote software testing management. The article discussed the
model that already existed, further excavates the parallelism betw een test stages and maintenance test stages and tries to propose a improved V model.
This model makes the software testing pass through the each stage of software development cycle.

Index Terms— Acceptance, accuracy, compiling, debugging, model checking, performance, program validation, reliability, security, testing

—————————— ——————————

1 INTRODUCTION

HE development process for a system is traditionally
as a waterfall model where each step follows the next,
as if in a waterfall. On current time everyone wants to a

fully satisfied project in very few investments. During
development and maintenance of such long lived software,
requirements are analyzed, designed and code modules are
developed, testing is planned and code is tested many
times. Thus software development and maintenance
services should ensure customer satisfaction. This calls for
software developer to ensure the quality of development,
implementation, Testing and as well as maintenance. Since
the schedule of software Development is running tight,
resulting in less effort for testing and maintenance. As
testing directly links to quality of product, this demands
that solution provider creates strong Testing and
Maintenance Base for the technology solutions.
What should be done to enhance the software testing
management? It does not imply that any of the steps in a
process have to be completed, before next step starts, or
that prior step will not have to be revisited later in
development. It is just a useful model for seeing how each
step works with each of the others.
We should have well techniques for testing supported by
simple and clear model to be followed to avoid unnecessary
ambiguity. This articles present two-dimensional approach
for managing testing. Firstly we need a testing that
incorporates testing into the entire software development
life cycle. Secondly software testing management has to
introduce the concept of software architecture to gradually
enhance its software testing management. This paper
discusses the simple V-model in detail and the improved
mode .that is most important and most effective.

2 SOFTWARE TESTING MANAGEMENT

The software architecture is the key towards an efficient
software testing management. We here briefly describe the
architecture of the software in this section.

2.1 Software Architecture

The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and their relationships among
them.The term software architecture as defined by Jacobson
is the set of models to be built, each having its characteristic
or set of modeling notations and they presents conceptual
view of the process adopted for software development.
Software community is well familiar with requirement
models such as Use case diagram, Object model which
represent conceptual view of requirements and system to
be built without implementation details.
The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components and the relationships
between them. The term also refers to documentation of a
system's software architecture. Documenting software
architecture facilitates communication between
stakeholders, documents early decisions about high-level
design, and allows reuse of design components and
patterns between projects [1].The software system
component consists of various elements of the system like
Programs, System Utilities, System Services; one more
definition is Architecture is the organizational structure of a
system. Architecture can be recursively decomposed into
parts that interact through interfaces, relationships that
connect parts, and constraints for assembling parts. Parts

T

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

that interact through interfaces include classes, components
and subsystems.

2.2 Part of Software and Maintenance tests

1. Software testing is more than just error
detection; Testing software is operating the
software under controlled conditions, to
(1) verify that it behaves ―as specified‖; (2)
to detect errors, and (3) to validate that what has
been specified is what the user actually wanted.

2. Verification is the checking or testing of items,
including software, for conformance and
consistency by evaluating the results against pre-
specified requirements. [Verification: Are we
building the system right?]

3. Error Detection: Testing should intentionally
attempt to make things go wrong to determine if
things happen when they shouldn’t or things don’t
happen when they should.

4. Validation looks at the system correctness – i.e. is
the process of checking that what has been
specified is what the user actually
wanted. [Validation: Are we building the right
system?]

5. Software Testing as defined by Pressman is the
process of executing a program or system with the
intent of finding errors. [Myers79] [2] Or, it
involves any activity aimed at evaluating an
attribute or capability of a program or system and
determining that it meets its required results.
[Hetzel88] [3] The results are observed or recorded,
and an evaluation is made of some aspect of the
system or program. A good test case is a one that
has a high probability of finding an as-yet
undiscovered error and a successful test is the one
that uncovers an as-yet undiscovered error. On the
other hand the maintenance of the software can
account for over 60 percent of all effort expended
by a development organization and the percentage
continues to rise as more software is produced
[Han93][12]. Software maintenance is the
modification of a software product after delivery to
correct faults, to improve performance or other
attributes or to adapt the product to a modified
environment [10]. Thus as described by Pressman
only 20percent of all maintenance work is fixing
errors and remaining 80 percent is spent adapting
existing systems to changes in their external
environment, making enhancements requested by
the users and reengineering an application for
future use. For carrying out the software
maintenance, certain software tests needs to be
performed in order to enhance the maintainability

and performance of the software. Thus software
testing and software maintenance tests work
together in achieving a good quality, highly
reliable and efficient software. These strategies
contribute towards the software testing
management. Thus this paper defines different
categories of software tests based on IEEE standard
glossary of Software Engineering Terminology [4,
5, 6, 7, 8] and various categories of software
maintenance tests. Their definitions are
summarized as shown as following; In other
words, validation checks to see if we are building
what the customer wants/needs, and verification
checks to see if we are building that system
correctly. Both verification and validation are
necessary, but different components of any testing
activity. The definition of testing according to the
ANSI/IEEE 1059 standard is that testing is the
process of analyzing a software item to detect the
differences between existing and required
conditions (that is defects/errors/bugs) and to
evaluate the features of the software item.
Remember: The purpose of testing is verification,
validation and error detection in order to find
problems – and the purpose of finding those
problems is to get them fixed.

4 PART OF SOFTWARE TESTS

1. Unit Testing: Starting from the bottom the first test level

is ―Component Test‖, sometimes called unit testing. It
involves checking that each feature specified in the
―Component Design‖ has been implemented in the
component.it involves checking that each feature specified
in the ―component design‖has been implemented in the
component. It focuses on each component individually,
ensuring that if functions properly as a unit. It heavily uses
white box testing techniques, exercising specific paths in a
module’s control structure to ensure complete coverage and

maximum error detection.

2. Integration Testing: It is most important test because

here system tests with integrative method. It addresses
assembling and integration of components to from a
complete software package. It uses black box testing
techniques to address issues related to dual problems of
verification and program construction.
3. System Testing: Once the entire system has been built
then it has to be tested against the ―System Specification‖ to
check if it delivers the features required. It is still developer
focused, although specialist developers known as system
testers are normally employed to do it.
In essence the system test is not about checking the
individual parts of the design, but about checking the
system as a whole .In effect it is one giant component.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

System testing can involve a number of specialist types of
test to see if the entire functional and non-functional
requirements have been met. In addition to functional
requirements these may include the following type of
testing for the non-functional requirements:

 : PERFORMANCE-Are the performance criteria met?

 : VOLUME- Can large volumes of information be
handled?

 : STRESS- Can peak volumes of information be handled?
 : DOCUMENTATION- Is the documentation usable for
the system?

 : ROBUSTNESS- Does the system remain stable under
adverse circumstances?
There are many others, the needs for which are dictated by
how the system is supposed to perform.

Testing conducted on a complete, integrated system to
evaluate the system's compliance with its specified
requirements. It requires no knowledge of the inner design
of the code or logic.

4. Acceptance Testing: Acceptance Testing checks the

system against the ―User Requirements‖. It is similar to
systems testing that the whole system is checked but the
important difference is the change in focus:
: Systems testing checks that the system that was specified
has been delivered.
: Acceptance testing checks that the system delivers what
was requested.
The customer and not the developer should always do
acceptance testing. The customer knows what is required
from the system to achieve value in the business and is the
only person qualified to make that judgment. The forms of
the tests may follow those in system testing, but at all times
they are informed by the business needs.
Testing to verify a product meets customer specified
requirements customer usually does this type of testing on
a product that is developed externally.

4 PART OF SOFTWARE MAINTENANCE

1. Set Testing: A test case is a set of Conditions or

variables under which a tester will determine whether an
application of software system meets its specifications at
the unit level.

2. Regression Testing: With modern systems one

person’s system, become somebody else’s component. It
follows that all the above types of testing could be repeated
at many levels in order to deliver the final value to the
business. In fact every time a system is altered.It is a
technique that detects spurious errors caused by software
modifications or corrections.

3. Compliance Testing: It is use for security purpose

that’s played a specific role in the software development.

Evaluates the presence and appropriate functioning of the
security of the application to ensure the integrity and
confidentiality of the data.

4. Simulation Testing: Acceptance Testing checks the

system against the ―User Requirements‖. It is similar to
systems testing that the whole system is checked but the
important difference is the change in focus:
: Systems testing checks that the system that was specified
has been delivered.
: Acceptance testing checks that the system delivers what
was requested.
The customer and not the developer should always do
acceptance testing. The customer knows what is required
from the system to achieve value in the business and is the
only person qualified to make that judgment. The forms of
the tests may follow those in system testing, but at all times
they are informed by the business needs.
The testing and/or simulation of system assets in the
physical and operational environment in which they are
expected to perform.

5. Release Test: Even if a system meets all its requirements,

there is still a case to be answered that it will benefit the
business. The linking of‖ business case‖ to Release testing is
looser than the others, but is still important.
Release testing is about seeing if the new or changed system
will work in the existing business environment. Mainly this
means the technical environment, and checks concerns such
as:
: Does it affect any other systems running on the
hardware?
: Is it compatible with other systems?
: Does it have acceptable performance under load?
These tests are usually run the by the computer operation
team in a business. The answers to their questions could
have significant impact if new computer hardware should
be required, and adversely affect the ―BUSINESS CASE‖.
It would appear obvious that the operations team should be
involved right from the start of a project to give their
opinion of the impact a new system may have. They could
then make sure the ―BUSINESS CASE‖ is relatively sound,
at least from the capital expenditure, and ongoing running
costs aspects. However in practice many operations teams
only find out about project just weeks before it is supposed
to go live, which can result in major problems.

5 SIMPLE MODEL

Requirement analysis

Specification

System design Integration testing

System testing

Acceptance testing

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Figure 1

The V-Model is system development model designed to
simplify the understanding of the complexity associated
with developing in system engineering. it is used to define
a uniform procedure for product or project
development.The V-model is a software development
process which can be presumed to be the extension of the
waterfall model. It was the first proposed by Paul Rook [11]
in the late 1980s and is still in use today. The V-Model
demonstrates the relationships between each phase of the
development life cycle and its associated phase of testing.
Instead of moving down in a linear way, the process steps
are bent upwards after the coding phase, to form the typical
V shape. The V-model deploys a well-structured method in
which each phase can be implemented by the detailed
documentation of the previous phase. Testing activities like
test designing start at the beginning of the project well
before coding and therefore saves a huge amount of the
project time. The purpose of V model is to Improve
efficiency and effectiveness of software development and
reflect the relationship between test activities and
development activities as shown in Figure 1. This model is
very simple and is perhaps the most traditional model
followed for management of software tests.

The basic V Model development process is divided into
Understanding of user’s requirements, performing
requirements analysis, designing the initial outline,
designing advanced detailed and describing required tests
in the basic development process as Shown in figure 1 from
left to right on each other counter parts. Software testing is
too important to leave to the end of the project, and the V-
Model of testing incorporates testing into the entire
software development life cycle. In a diagram as in Figure 1
of the V-Model, the V proceeds down and then up, from left
to right depicting the basic sequence of development and
testing activities. The model highlights the existence of
different levels of testing and depicts the way each relates
to a different development phase.

Like any model, the V-Model has detractors and arguably
has deficiencies and alternatives but it clearly illustrates
that testing can and should start at the very beginning of
the project. In the requirements gathering stage the
requirements are gathered, verify and validated in order to

justify the project. The business requirements are also used
to guide the user acceptance testing. The model illustrates
how each subsequent phase should verify and validate
work done in the previous phase, and how work done
during development is used to guide the individual testing
phases. This interconnectedness lets us identify important
errors, omissions, and other problems before they can do
serious harm.

6 MODIFIED MODEL

V model is the most representative model for traditional
software testing management. The purpose of the V model
is to improve efficiency and effectiveness of software
development and reflect the relationship between test
activities, development activities and Maintenance
activities. Once the system has been made functional and all
activities have been performed, if it is not maintained
properly, all the development and testing efforts shall go in
vain. Thus in this section of the paper we propose a new
improved V model called as the Advanced V model that
reflects the relationship between the development activities,
test activities and maintenance activities in order to achieve
a highly efficient and reliable system.

7 IMROVED V-MODEL

It is basically based on testing and maintenance that is more
effective in this model. Software testing is described as a
continuous improvement process that must be integrated in
into an application maintenance methodology. The term
software maintenance usually refers to changes that must
be made to software after they have been delivered to the
customer or user. The definition of software maintenance
by IEEE [1993] [9] is ―The modification of a software
product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a
modified environment.
Software testing and software maintenance are the most
important phases of software development life cycle that go
hand in hand to obtain reliable software. The improved V
model of testing incorporates testing and maintenance
activities into the entire software development life cycle.‖
In the diagram of improved model , it proceeds down and
then up, in first half it move down and second half its move
upward direction. From left to right depicting the basic
sequence of development, testing and maintenance
activities. The model highlights the existence of different
levels of testing with respect to their maintenance activities
tests and depicts the way each relates to different
development phase activities. The testing commences
together with the initial phase of development of the
project. In the requirements gathering stage the
requirements are gathered, analyzed, verified and validated
in order to justify the Project. The business requirements at

Component design

Coding

Unit testing

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the same time also guide to the acceptance testing. Once the
acceptance testing is done the error free product needs to be
deployed as per the satisfaction of the customer The
improved V Model development process is divided into
understanding of the business case user’s requirements,
performing requirements analysis, specification, designing
the initial and detailed outline and laying out the program
specifications. Then the required tests are described in the
basic development process as shown in improved model
from left to right on each other counterparts Along with the
maintenance tests being carried out for each of the test
activity as shown in the figure. Once the activities of the
development phase starts simultaneously the activities of
the testing phase and maintenance phase commence. Ever
imagined Software being deployed without carrying out
these testing activities? No would be the prompt reply. So
with the unit testing, the modules programmed are tested
and test cases (set tests) are designed. Then moving on to
the next level is integration testing where individual
modules are integrated and tested for functionality. But this
is incomplete without regression testing as the updated
changes are then reflected. System testing describes the
testing of the system as a whole. Along with it we need to
do the security testing in order to check the systems
compliance to various security threats. In the modern era
where technology is moving with the speed of light, the

need to deploy security measures has increased. Thus
security threats like unauthorized access, user permission
grant needs to be checked at each phase of development
activity and testing activity. Now we need to a release test
in this test even system meets all its requirements there is
still a case to be answered that it will benefit the business.
The linking of business case to release testing is looser then
the others, but is still important. Release testing is about
seeing if the new or changed system will work in the
existing business environment mainly this means the
technical environment and checks concerns such as:
: Does it affect any other systems running on the
hardware?
: Is it compatible with other systems?
: Does it have acceptable performance under load?
These tests are usually run the by the computer operation
team in a business. The answers to their questions could
have significant impact if new computer hardware should
be required, and adversely affect the ―BUSINESS CASE‖.
It would appear obvious that the operations team should be
involved right from the start of a project to give their
opinion of the impact a new system may have. They could
then make sure the ―BUSINESS CASE‖ is relatively sound,
at least from the capital expenditure, and ongoing running
costs aspects. However in practice many operations teams
only find out about project just weeks before it is supposed
to go live, which can result in major problems.Then once
the user is satisfied after conducting the alpha and beta
tests of acceptance test activity the software or the product

is deployed at the customers place. Thus a continuous
interaction of the development activities, testing activities
and maintenance test activities completes the software
development life cycle of the product thereby efficiently
carrying out the software test management activities. It’s
played a very important role in software development.

 Acceptance Testing

 System Testing

 Integration Testing

 Unit Testing

 Figure 2

8 ARCHITECTURE OF IMPROVED V-MODEL

Architecture gives the structural description of the

components and thereby helping us to understand the

Business case

Requirement
analysis

Requirement

specification

Design

specification

Program

specification

Coding

Set testing

Simulation

testing

Compliance

testing

Regression
testing

Release testing

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

components in a modified and better way. This section

of the model will describe the architecture of the

component for software test management.

8.1 Management of Improved V Model

In this improved model section construct a software test
management structure of component from a structural
point of view. The structure of the components of software
testing management and software maintenance tests are the
basic elements, and they compose of software testing
management structure.
The necessary and beneficial structural components are
analyzed from software development, testing and
maintenance point of view. That is, we need to identify all
the builders and destroyers of the software testing
management such as customers and the role of the users are
as follows:
1. Business manager: A business manager is a provider of
the business case that will be depended on the business
environment and also related to the user. It’s very
important.
2. Project Manager: A project manager is a facilitator.
Means provider .The project manager is the one who is
responsible for making decisions in such a way that risk is
controlled and uncertainty minimized. Every decision
made by him should ideally be directly benefit the project.
He must possess a combination of skills including the
ability to ask penetrating questions, identify unstated
assumptions, and resolve personnel conflicts along with
more systematic management skills.
3. Software Development Manager: Leads a team of
Programmers. Development Manager is responsible for
leading the software development team in support of the
software development life cycle process, change
management, development environments and production
releases. He will provide overall supervision and technical
guidance to the development team in understanding
requirements, preparing high level and low-level designs,
coding and building the software.
4. Software Architect: An architect acts as a technically
savvy business owner. He deals with the interactions of
systems, whether between components written in different
languages at different times and at different locations, or
between components of the same software system that use
the same coding language.
Architects deal with the interactions of systems, whether
between components written in different languages at
different times and at different locations, or between
components of the same software’s system that use the
same coding language.
5. Software Developer: A software developer is a person
concerned with facets of the software development process

wider than design and coding, a somewhat broader scope
of computer programming or a specialty of project
managing including some aspects of software product
management.
6. Testing head: The testing head compare all tests and also
use release test according to business environment and
business case then instructed the releasing project. Its
played most important role.
7. Test Manager: Test managers really serve two different
customers, their testers and corporate management. For the
testers, he helps develop product test strategies, and
provides test expertise to the testing group. For
management, he gathers product information so that
corporate management can decide when the product is
ready for implementation.
8. Test Leader: Technical leader acts as in interface between
the test manager and the testing team. He is responsible for
the completion of the testing as per the designed time
frame.
9. Test Designer: Test designer is responsible for developing
test strategies and test plans. He provides an assessment on
the overall status of the testing program. He stays well
informed and connected with the industry and the current
trends in the technologies available.
10. Software Tester: Software tester is responsible for
carrying out software testing using various strategies of
testing. He builds up the test cases and test plans for the
project.
11. Quality Manager: Quality Manager works towards
customizing software development processes. He is
responsible for creating and implementing a quality
management program plan for the entire organization and
works towards process improvement.
12. Quality Assurance Engineer: Software quality assurance
engineer deals with the location of the defect and
mechanisms to prevent defects.
13. Quality Control Engineer: Software quality control
engineer looks after the set of activities designed to
evaluate the quality of developed software.
14. Quality Guarantee Engineer: Software quality guarantee
engineer is responsible for maintaining software quality. He
is responsible for tackling and solving all software
problems.
15. Quality head. this is responsible for releasing the project
.In final step the project head release the project according
to business environment. This is most important in the
software releasing.

8.2 Management Structure service
The services of these fifteen components obtained for the
software testing management and maintenance are as
follows:
Project Management Plan
1. Business case manager manages the business case and
provide the environments for the project.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2. Project Manager manages the project and provides the
project management plan.
3. Software Development Manager is responsible for all
issues regarding system development.
4. Software Designer provides the system designing
services.
5. Software Developer provides the program design and
development service. Test Management Plan
6. Testing head manage the release test.
7. Test Manager provides the acceptance testing service and
test management plan.
8. Test Leader provides the system testing service.
9. Test Designer provides the Integration testing service.
10. Software tester provides the unit testing service.
Quality Management Plan
11. Quality head manages the release testing in final process
12. Quality Manager provides the simulation testing service
and quality management plan.
13. Quality Assurance Engineer provides the security
testing service.
14. Quality Control Engineer provides the Regression
testing service.
15. Quality Guarantee Engineer provides the test case
service.

CONCLUSION
Here propose prepare an improved V model describing
that for efficient software testing management along with
the development and testing process improved the
maintenance process is also equally important. Thus we
have integrated these processes for efficient software
testing management. We have achieved what should be
done, why should be done and how it should be done in
software testing management at all the phases of the
software development. Maintaining the software before
and after testing helps improving the quality of the
software to a large extent. I think it will be efficient model
that provides guidance for the planning and realization of
projects. The following objectives are intended to be

achieved by a project execution:

Minimization of Project Risks: The V-Model improves
project transparency and project control by specifying
standardized approaches and describing the corresponding
results and responsible roles. It permits an early recognition
of planning deviations and risks and improves process

management, thus reducing the project risk.
Improvement and Guarantee of Quality: As a
standardized process model, the V-Model ensures that the
results to be provided are complete and have the desired
quality. Defined interim results can be checked at an early
stage. Uniform product contents will improve readability,
understand ability and verifiability.

Reduction of Total Cost over the Entire Project and
System Life Cycle: The effort for the development,
production, operation and maintenance of a system can be

calculated, estimated and controlled in a transparent
manner by applying a standardized process model. The
results obtained are uniform and easily retraced. This
reduces the acquirers dependency on the supplier and the
effort for subsequent activities and projects.

Improvement of Communication between all
Stakeholders: The standardized and uniform description
of all relevant elements and terms is the basis for the
mutual understanding between all stakeholders. Thus, the
frictional loss between user, acquirer, supplier and
developer is reduced.

References:

Marshall Anthony, Student Software Architect, Fairleigh Dickinson
University

Semyon Axelrod and Mike Regan, GMAC/RFC

Dewayne E. Perry and Alexander L. Wolf. "Foundations for the Study
of Software Architecture''. ACM SIGSOFT Software Engineering Notes,
17:4, October 1992:

[1] Bass, Len; Paul Clements, Rick Kazman (2003). Software

Architecture In Practice, Second Edition. Boston: Addison-
Wesley. pp. 21–24. ISBN 0-321-15495-9.

[2] [Myers79] Myers, Glenford J., The art of software testing,
Publication info: New York: Wiley, c1979. ISBN:
0471043281 Physical description: xi, 177 p. .
[3] [Hetzel88] Hetzel, William C., The Complete Guide to

Software Testing, 2nd ed. Publication info: Wellesley, Mass. :
QED Information Sciences, 1988. ISBN:
0894352423.Physical description: ix, 280 p..

[4] Sommerville, Ian, Software Engineering, 6th ed., Addison
Wesley, 2000
[5] IEEE Standard for Software Verification and Validation
Plans (Reaff.1992). IEEE Std 1012-1986.

[6] IEEE Standard for Software Unit Testing. IEEE Std 1008-
1987.
[7] IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990.

[8] IEEE Standard for Software Test Documentation. IEEE Std
829-1998.
[9] IEEE. 1993. IEEE Standard for Software Maintenance. IEEE
Std 1219-1993. Institute of Electrical and Electronics

Engineers, inc., New York, NY.
[10] Gopalswamy Ramesh; Ramesh Bhattiprolu (2006). Software
maintenance : effective practices for geographically
distributed environments. New Delhi: Tata McGraw-Hill.

ISBN 9780070483453.
[11] Rook, Paul, E. Rook, ―Controlling software projects‖, IEEE
Software Engineering Journal, 1(1), 1986, pp. 7-16.
[12] [Han93] Hannus, Jouko, Prosessijohtaminen. Gummerus

Kirjapaino, Jyväskylä, 1993.
http://members.tripod.com/bazman/index.html

^ a b c d Clarus Concept of Operations. Publication No. FHWA-JPO-
05-072, Federal Highway Administration (FHWA), 2005

http://www.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://www.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://members.tripod.com/bazman/index.html
http://en.wikipedia.org/wiki/V-Model#cite_ref-FHWA_05_0-0
http://en.wikipedia.org/wiki/V-Model#cite_ref-FHWA_05_0-1
http://en.wikipedia.org/wiki/V-Model#cite_ref-FHWA_05_0-2
http://en.wikipedia.org/wiki/V-Model#cite_ref-FHWA_05_0-3
http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/14158.htm

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, Februaryy-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

^ "Systems Engineering for Intelligent Transportation Systems". US
Dept. of Transportation. p. 10. Retrieved 2007-06-09.

^ a b c d e f g h Forsberg, K., Mooz, H., Cotterman, H. Visualizing
Project Management, 3rd edition, John Wiley and Sons, New York, NY,
2005. Pages 108-116, 242-248, 341-360.

^ a b c d e 3.3 to International Council On Systems Engineering
(INCOSE), Systems Engineering Handbook Version 3.1, August 2007,

pages 3.8^ Forsberg, K., Mooz, H. (1998). System Engineering for
Faster, Cheaper, Better. Center of Systems Management. Archived
from the original on 2003-0420. ̂"The SE VEE". SEOR, George Mason
University. Retrieved 2007-05-26. ̂a b c d e Forsberg, K. and Mooz, H.,

"The Relationship of SystemsEngineering to the Project Cycle,"
National Council On Systems Engineering (NCOSE), October 1991

Garlan and Perry, guest editorial to the IEEE Transactions on Software
Engineering, April 1995:

Dewayne E. Perry and Alexander L. Wolf. "Foundations for the Study

of Software Architecture''. ACM SIGSOFT Software Engineering Notes,
17:4, October 1992:

Bass, Clements, and Kazman. Software Architecture in Practice,
Addison-Wesley 1997:

Bass, Clements, and Kazman. Software Architecture in Practice 2nd ed,
Addison-Wesley 2003:

Bass, Clements, and Kazman. Software Architecture in Practice,
Addison-Wesley 1997:

Wikipedia and Encyclopedia

http://en.wikipedia.org/wiki/V-Model#cite_ref-1
http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-0
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-1
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-2
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-3
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-4
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-5
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-6
http://en.wikipedia.org/wiki/V-Model#cite_ref-VPM_2-7
http://en.wikipedia.org/wiki/V-Model#cite_ref-INCOSE_3-0
http://en.wikipedia.org/wiki/V-Model#cite_ref-INCOSE_3-1
http://en.wikipedia.org/wiki/V-Model#cite_ref-INCOSE_3-2
http://en.wikipedia.org/wiki/V-Model#cite_ref-INCOSE_3-3
http://en.wikipedia.org/wiki/V-Model#cite_ref-INCOSE_3-4
http://en.wikipedia.org/wiki/V-Model#cite_ref-4
http://web.archive.org/web/20030420130303/http:/www.incose.org/sfbac/welcome/fcb-csm.pdf
http://web.archive.org/web/20030420130303/http:/www.incose.org/sfbac/welcome/fcb-csm.pdf
http://www.incose.org/sfbac/welcome/fcb-csm.pdf
http://en.wikipedia.org/wiki/V-Model#cite_ref-5
http://www.gmu.edu/departments/seor/insert/robot/robot2.html
http://en.wikipedia.org/wiki/V-Model#cite_ref-Original_6-0
http://en.wikipedia.org/wiki/V-Model#cite_ref-Original_6-1
http://en.wikipedia.org/wiki/V-Model#cite_ref-Original_6-2
http://en.wikipedia.org/wiki/V-Model#cite_ref-Original_6-3
http://en.wikipedia.org/wiki/V-Model#cite_ref-Original_6-4
http://www.csm.com/repository/model/rep/o/pdf/Relationship%20of%20SE%20to%20Proj%20Cycle.pdf
http://www.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://www.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://www.awl.com/cseng/titles/0-201-19930-0/
http://www.awl.com/cseng/titles/0-201-19930-0/
http://www.awl.com/cseng/titles/0-201-19930-0/

